Detecting BitTorrent Blocking

Marcel Dischingerf Alan Mislovef*

TMPI-SWS

ABSTRACT

Recently, it has been reported that certain access ISPsiiaeps
titiously blocking their customers from uploading datangsithe
popular BitTorrent file-sharing protocol. The reports haparked
an intense and wide-ranging policy debate on network nigytra
and ISP traffic management practices. However, to date, g1d u
lack access to measurement tools that can detect whetlieathe
cess ISPs are blocking their BitTorrent traffic. And sincB43io
not voluntarily disclose their traffic management policies one
knows how widely BitTorrent traffic blocking is deployed ihet
current Internet. In this paper, we address this problemdsygth-
ing an easy-to-use tool to detect BitTorrent blocking andohgr
senting results from a widely used public deployment of tu. t

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations; C.2.5
[Computer-Communication Networks]: Local and Wide-Area
Networks; C.4 [Performance of Systems]

General Terms: Measurement, Performance, Experimentation
Keywords: BitTorrent, blocking, network measurement

1. INTRODUCTION

Access ISPs like residential cable and DSL providers aneas:
ingly deploying middleboxes, such as traffic shapers, dogkand
firewalls, to monitor and manage their customers’ traffic.eSéh
middleboxes classify and manipulate flows belonging toedit
applications according to ISP-specified policies [1, 2]. thfic
management policies are often driven by business intefesis
peering or transit agreements), many ISPs do not publisyiase
the details of their middlebox deployments. Thus, end usetay
may not know about the presence of the middleboxes, and dten
not understand the impact of ISP traffic management policies
the performance of their applications.

Recently, it has been reported that certain access ISPsd& 4
surreptitiously blocking their customers from uploadiratad us-
ing the popular BitTorrent file-sharing protocol. The ISPsrav
found to tear down TCP connections identified as BitTorrentdl

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

IMC’ 08, October 20-22, 2008, Vouliagmeni, Greece.

Copyright 2008 ACM 978-1-60558-334-1/08/10 ...$5.00.

Andreas Haeberlen'* Krishna P. Gummadit

Rice University

by sending forged TCP reset (RST) packets to the end hostseTh
reports of blocking sparked an intense and wide-rangingydke-

bate between ISPs, consumer advocacy groups, web sitdajgera
and government agencies on acceptable ISP traffic managemen
practices and network neutrality [5]. However, to date, agdrs

lack access to measurement tools that can detect whettieathe
cess ISPs are blocking BitTorrent traffic. As a result, nolamavs

how widely BitTorrent is blocked in the current Internet.

In this paper, we present a large-scale measurement stiit of
Torrent traffic blocking by ISPs. To conduct the study, weglesd
a tool called BTTest, which enables end users to test fokbigc
on their own access links. BTTest runs as a Java applet vittin
user's web browser; it emulates a BitTorrent flow to a server u
der our control, and it checks whether this connection igtalo
with TCP reset packets that neither endpoint has sent. Biges
easy to use, which enables us to gather data about a large number
of ISP links. The test achievasproducible results because it runs
in a controlled environment, and its analysic@servative in the
sense that it checks for a very specific blocking technigaemety
interrupting flows with forged connection reset packets.

We deployed BTTest on publicly accessible test serversmand i
vited end users around the world to test their links. Overraooge
of 18 weeks, more than 47,300 end users in 1,987 ISPs wodd-wi
ran BTTest. We examined the traces gathered during thessefoes
evidence of BitTorrent blocking. Our findings show that Bitfent
uploads are being blocked for a significant number of hoststiyn
from ISPs located in the USA and in Singapore. While our cur-
rent study is limited to detecting BitTorrent blocking, @presents
a first step towards the broader goal of making ISP policieeemo
transparent to end users.

The rest of the paper is organized as follows. Section 2 gesvi
an overview of the efforts by ISPs to shape BitTorrent tradficl
discusses existing work related to detecting such behasec-
tion 3 describes the design of our BT Test tool and the metloggio
used to gather traces at scale. In Section 4, we explain hole&T
analyzes the traces to detect BitTorrent blocking, andiG@e&
presents the findings of our measurement study. We conctude i
Section 6 with a discussion of open challenges and potdntiale
work.

2. BACKGROUND AND RELATED WORK

BitTorrent [6] is a popular peer-to-peer file-sharing poat that
accounts for a large and rapidly growing fraction of the daties
sent over the Internet [7]. The resulting increase in Irgetraffic
is raising the cost of transit for ISPs, many of which areisglflat-
rate plans with unlimited Internet access to their custem&hus,
itis not surprising that an ISP would implement strategiagtiuce
the amount of BitTorrent traffic generated by its customers.



BTTest server

=

SE¥<

@ Web request

)‘ @Java applet -

(3 BitTorrent flows

BTTest server

i
3

BTTest server User

. L

@ Results page

Figure 1: Overview of the BTTest system:(1) The user initiates the test. (2) The server sends heraalaplet. (3) The applet connects
to the server and emulates a sequence of BitTorrent flowsThd)applet informs the server whether any flows have beenaba(5) The
server analyzes the information from both endpoints anglajs a result page.

Many ISPs are known to rate-limit the bandwidth consumed by
BitTorrent traffic by deploying traffic shapers in their netks [2].
However, it has been discovered recently that some ISPstdosto
rate-limit BitTorrent flows but block them outright [5] byjetting
forged RST packets into the flows. When the end nodes of a BitTo
rent transfer receive the RST packets, they immediatetyitete
the transfer.

The aggressive blocking of BitTorrent traffic by ISPs hasrbee
widely criticized, and it has generated significant intemesletect-
ing BitTorrent traffic manipulation. While several systetfmsve
already been built to detect in-network BitTorrent bloakirthey
either require expert knowledge and specialized toolsdlvtimits
scalability), or they are based on high-level heuristichi¢h lim-
its reliability). An example of the first category is the Biemic
Frontier Foundation’s ‘Test Your ISP’ project [4], whichferfs in-
structions for tracing a BitTorrent transfer and checkiogforged
packets. This method requires access to two hosts in diff¢8&s
and involves the use of tools like Wireshark, which is beytmel
capabilities of most end users. An example of the secondjcate
is the network monitor plugin for the popular Azureus BitEort
client [8], which reports the number of aborted connecti®isce
the plugin does not correlate observations from both emipaif
an aborted flow, it cannot reliably determine whether the R&3k-
ets were forged or sent by the other peer.

To our knowledge, BTTest is the first tool to offer highly spe-
cific, reliable blocking detection to a large number of endras

3. MEASUREMENT METHODOLOGY

In this section, we first present the design of BTTest and then
describe how BT Test gathers traces of BitTorrent flows.

3.1 Design goals

The goal of BTTest is to detect whether a user’s BitTorreaifitr
is being blocked. More specifically, we wanted to enable t& u
to answer the following three questions:

1. Is an ISP blocking BitTorrent flows with forged RST pack-
ets?

2. How is an ISP identifying BitTorrent flows? Is the identifi-
cation based on port numbers, BitTorrent protocol messages
or both?

3. Does the blocking affect BitTorrent uploads, downloaats,
both?

Note that we focus exclusively on BitTorrent blocking, amdlyo
on one specific technique, namely blocking with forged RSdkpa
ets. We donot consider other forms of traffic manipulation, such
as rate-limiting, message-dropping, or altering of theteon De-
tecting such a broad range of traffic manipulation practisabe
subject of future work.

Leecher Seeder

handshake
handshake

bitfielqg
pitfield

i nteresteq
unchoke

request
pi ece

Figure 2: BitTorrent packet exchange in BTTest: The interac-
tion always follows the same fixed script.

design goal for BT Test is that it should be very easy to useallg,
it should be as easy to use as the test sites for measuringdhte
connection speeds [9].

3.2 BTTest overview

To detect whether BitTorrent flows are blocked, BTTest etesla
a series of BitTorrent flows between the user’s host and aalent
BTTest server. During each flow, BTTest collects a packetetra
and it closely monitors both endpoints for any error cowditi that
might cause the flow to be aborted. If the flow is aborted withou
an apparent cause, BTTest checks the packet trace forauiti
control packets that were not sent by either of the endpolifgsich
packets are found, BT Test reports this as evidence of bigcki
BTTest requires no special expertise and can be run from any
machine that has a web browser with Java support. This ensure
that it is available to a wide range of users. Figure 1 shows an
overview of our prototype system. When a user visits the BT Te
website and requests a measurement of her access link, aglava
plet is downloaded to her web browser which conrfeciur cen-
tral BT Test server. This server is located in a network th&hown
not to block BitTorrent flows, so we can be sure that if any kloc
ing is observed, it is performed on a link near the user’s.hbse
applet then emulates a sequence of BitTorrent flows and et
results back to the server. Finally, the browser displayssallts
page, which reports whether any blocking was observed.

3.3 Emulating BitTorrent flows

BTTest emulates BitTorrent flows between end hosts and test
servers, using the standard BitTorrent protocol [6]. Theriction
always follows the same fixed script, which is shown in Fig2ire

We wanted to deploy BTTest on a public web server and gather To avoid problems with NAT and firewalls, the connection is al

traces from end users around the world. Hence, another targor

ways initiated by the user-side applet.



The flow can be either a downstream flow (in which data is trans-
ferred from the server to the user’s host) or an upstream flaw.
the following, we will refer to the sending endpoint as teeder,
which claims to already have all pieces of a file, and to themwth
endpoint as théeecher, which claims to have no pieces so far.

The leecher begins by exchangingandshake message with
the seeder. This is followed by an exchangebof fi el d mes-
sages, which indicate the data segments that are available |
cally. Here, the seeder reports that it has all the segmesise
the leecher reports that it has none. Next, the leecher samds
i nt er est ed message to indicate that it wants to download seg-
ments, and the seeder grants it access by sendinghahoke
message. During the remainder of the flow, the leecher dasslo
as many segments as it can; it repeatedly sendscaiest mes-
sage to ask for a random segment, and the server retyghe@e
message that contains the segment. Since the content daaatro
ter for our experiment, we fill each segment with random hytes

3.4 BitTorrent test suite

To determine how ISPs identify BitTorrent traffic, BT Testuadly
runs multiple flows with different parameters. Specificatlyaries
the following:

e TCP port: Half of the flows use port 6881, a well-known
BitTorrent port. The others use port 4711, which is not asso-
ciated with a specific protocol.

e Direction: Half of the flows transfer content downstream
(from the server to the user’s host), while the others trans-
fer content upstream (from the user’s host to the server).

e Protocol: Half of the flows contain real BitTorrent messages.

The others contain messages of the same size and in the samé.2

order, but filled with random bytes.

BTTest runs each of the eight possible combinations twize, f
a total of 16 test flows. Each BitTorrent flow lasts for 2esec-
onds, unless it is aborted earlier. Thus, the total numbdaytds
transferred depends on the available bandwidth on the paiteln
the user's host and the server. By observing which of theedest
flows are aborted, BT Test can infer how BitTorrent trafficienti-
fied, i.e., which features actually trigger the blockingeTbur test
flows with random data over a non-BitTorrent port serve asaa-‘s
ity check”; they show whether the BT Test applet can comnatric
with our test servers at all.

3.5 Trace collection

For each emulated flow, BT Test collects two pieces of infaiona

(1) Onthe server side a complete link-level packet tracal(@ous

to t cpdunp), and (2) on the user side any Java exceptions the

applet observed during the flow, including the point in trensfer

where the connection was closed. We refer to these two itsras a

result, and to the set of all 16 results for a single host aesalt set.
Ideally, BTTest would gather a packet trace on the user's hos

as well. However, there is no easy way to take such a trace from

a Java applet running in a web browser, and in any case, admin-

istrator privileges (and thus a considerable amount of)tmsuld

be required on most operating systems. Therefore, we haddo fi
another way to determine whether the host had seen a commecti
reset from the server. Unfortunately, a connection resetifests
itself in Java as a generlcOExcept i on; the real cause is men-
tioned only in the string representation, which can varymMeen

2The flows are longer than strictly necessary because we alae m
sure throughput. However, this data is not used in the ptesger.

JVMs and between different languages. Our current pro&otgp-
ognizes the most common strings directly and logs any othags
for further analysis.

4. TRACE ANALYSIS

We now describe the analysis BTTest performs on the gathered
data, and we explain the types of blocking it can detect.

4.1 Sanitizing traces

As described in Section 3.4, BTTest tries to run a sequends of
flows between the user’s host and the server. However, sosis ho
abort the test early or experience problems when runningghket.
Therefore, BTTest only considers a result set when theviatio
two conditions hold:

e All 16 flows were tested and produced a resultResult sets
which do not contain results for all 16 tests are not considler
in the results below. This can be caused by the user closing
her web browser or browsing to another site, or by a crash of
the applet.

All 4 TCP “sanity check” flows were able to send some
data. Result sets where at least one of the sanity check flows
had no data packet ACKed (in the case of a download) or
received (in the case of an upload) are discarded. This indi-
cates the applet was unable to contact our web server, which
could be caused by misconfigured NATs, firewalls, or Java
applet security policies.

If either of these conditions are not met, BTTest reportsreor e
to the user.

Identifying blocked flows

BTTest's goal is to detect whether middleboxes in the nétveoe
inserting forged RST packets to tear down BitTorrent flonsd@-
tect these inserted packets, BTTest analyzes the seregerdtang
with any Java exceptions seen by the user-side applet forfese

A flow is considered to have been torn down by a forged RST
packet only wherll of the following three conditions hold:

e An IOException with a specific set of messages was seen
by our applet. This indicates that an error was observed
with the TCP connection on the user side. BTTest looks
for the messages “Connection reset by peer” or “An exist-
ing connection was forcibly closed by the remote host” in
the I0Exception, which indicate that the host has received a
RST packet.

The server’s packet trace contains at least one incoming
RST packet. This RST packet causes the connection to be
torn down at the server.

The server's packet trace contains no outgoing RST
packets before a FIN or RST packet was receivedOnce

the server receives a FIN or RST packet, the connection is
torn down. Thus, any subsequent data packets received on
the connection will be naturally responded to with RSTs.

The presence of all three conditions strongly indicates ¢ha
forged RST caused the flow to be torn down. The first two con-
ditions indicate that a RST was received at both the senetitian
user’s host. While we cannot say for sure that the user’s teast
ceived a RST packet (as we do not have a packet-level tragce fro
the host), we only look for IOExceptions with messages that a
caused by the receipt of a RST packet. The third conditiof ind
cates that the server did not initiate the connection teamd(in



other words, it received either a FIN or a RST before it segt an
RSTSs). Thus, BTTest detects forged RSTs by looking for fldlys (
which were torn down by a RST received at the user’s host and/o
server and (2) which contain no RSTs sent by the user’s hakeor
server before the connection was torn down.

4.3 Detecting BitTorrent blocking

We now describe how BTTest uses the information about btbcke
flows to detect BitTorrent blocking, and to infer how BitTent
flows are identified by the middlebox. Our working hypothésis
that the identification could be based on three flow charisties:
the TCP port number of the flow, the BitTorrent messages in the
flow, and the direction of the flow.

Recall that for each test, BTTest runs two identical flowsitso
obtains two results. BTTest considers a test to have beentaf
by forged RSTs if either of the two flow results indicates fmtg
RSTs. For simplicity, we call the test to hafagled in this case;
otherwise, we say that the test tsasceeded.

BTTest then looks for BitTorrent blocking behavior by exami
ing the result sets for each direction separately. If alistés one
direction using the BitTorrent ports fail regardless of tiez Bit-
Torrent data or random data was sent, BTTest reitfBorrent
blocking based on BitTorrent ports in that direction. If all the tests
in one direction using the BitTorrent messages fail, relgasdof
the port on which the test runs, BT Test repdisiorrent blocking
based on BitTorrent messages in that direction.

4.4 Limitations

In its current form, BT Test can only detect a single form affic
manipulation. It considers only BitTorrent traffic, and piblock-
ing by injected control packets. BTTest currently does ookl
for traffic throttling, packet dropping, or packet manigida. Ex-
tending BT Test to test for such additional behavior is tHgestt of
future work.

Also, BTTest cannot determine at which point along the plagh t
forged RST packets are generated. A typical Internet pdthdsan
a host and our measurement servers is likely to cross neil§is.
BTTest cannot determine which ISP is responsible for tgadown
BitTorrent connections. Developing techniques which wetevork
tomography to pinpoint the location of the forged RST paskst
the subject of ongoing work.

Finally, BTTest's centralized architecture makes it polesfor
ISPs to avoid detection by whitelisting the BT Test servaiss is
unlikely to have affected the data we present in this papgrjtb
may become a problem once BTTest is more widely known. We
are currently working on a decentralized version of BT Testich
would make whitelisting by ISPs much more difficult.

5. RESULTS

In this section, we describe how we collected a set of traces f
our public BTTest server, and we present results from oulyaisa
of these traces.

5.1 Data set

We deployed BTTest on a publicly accessible web server at
http: //broadband.mpi-sws.org/transparency/bttest.php.  Initially,
we invited a handful of our colleagues and friends to test t8&€s,
and we asked them to spread the invitation to their friend$erA
the first week, the site caught the attention of a few inflzhiiog-
gers, and hundreds of new users tested their ISPs each day.

From March 18th to July 25th, 2008, our BTTest servers col-
lected a total of 47,318 result sets from end users conneoted
1,987 ISPs world-wide. 146 result sets did not contain tedor

all 16 flows, and a further 17 failed to send data during at leas
of the sanity-check flows. In these cases, BTTest reporteran
to the user, so we removed these sets.

Some users ran our test multiple times. To avoid biasing our
results, for each IP address, we considered only the firsitrest
that passes the two conditions above, and we ignored all mtbelt
sets for that IP address. After removing the duplicate testsvere
left with 41,109 result sets.

We found evidence of BitTorrent blocking in 3,353 (8.2%)lué t
41,109 result sets. In the rest of this section, we take @closk
at the hosts that observed blocking.

5.2 Where are the blocked hosts located?

First, we examined the countries in which hosts observe@oBit
rent blocking. In total, our test was run from users in 135nzou
tries. Most of our users came from North America (44.3%) dper
(26.7%), and South America (17.9%).

Table 1 lists all countries where we found BitTorrent blaki
for at least one host. Our results indicate widespread Biehd
blocking only for the USA and for Singapore. Interestingyen
within these countries, we observed blocking only for hbsisng-
ing to a few ISPs.

Next, we looked at the ISPs whose hosts were affected by Bit-
Torrent blocking. Overall, we found that hosts of 47 ISPsegkp
enced blocking; the ISPs are listed in Table 1, along withilna-
ber of hosts we tested from each ISP and the number of hostsewho
BitTorrent flows were blocked. The results show that not afita
of these ISPs are affected by blocking.

We do not have enough data to determine why only some (but
not all) hosts of an ISP are subjected to blocking, but theee a
several possible explanations. For example, the middkEbtixat
block BitTorrent transfers might not be deployed on all ol@R’s
network paths, or blocking might depend on the current load o
the network. Also, some ISPs might allow BitTorrent trafffcto a
certain threshold and apply the blocking to the “heavy tsttenly.

5.3 How do ISPs identify BitTorrent flows?

Next, we wanted to understand what flow properties ISPs were u
ing to detect and block BitTorrent flows. We examined eaclhef t
three flow characteristics BT Test varies in the test surtd vee de-
termined how many of the 3,353 result sets contained evealehc
blocking based on these characteristics.

e TCP port: We found that only 530 (15.8%) of the result
sets showed evidence of blocking based on BitTorrent ports,
regardless of whether or not the flows actually contained Bit
Torrent messages. Thus, blocking of TCP connections based
only on well-known BitTorrent ports seems to exist, but does
not appear to be widespread.

e Direction: We found that 3,335 (99.5%) of the result sets
contained evidence of blocking in the upstream direction, b
only 71 (2.1%) of them contained evidence of blocking in
the downstream direction. Thus, ISPs seem to be blocking
primarily BitTorrent uploads and are rarely interferingtwi
BitTorrent downloads.

e Protocol: Finally, we found that 3,293 (98.2%) of the re-
sult sets contained evidence of blocking based on BitTorren
messages. Thus, ISPs appear to be using deep packet inspec-
tion to block BitTorrent flows regardless of the port they are
using.

In summary, the BitTorrent blocking we observed seems to be
focused primarily on BitTorrent uploads, and it appearsfteca



Country ISP # mheozi:red # ?]'ggfd We found that, on this particular access link, BitTorreribags
Austala AARNeT > T were blocked if and only if all of the following conditions ko
g?;%i#m 'I;"Sgil-'}eéfgsorg 554 i e The server sent a valid BitTorrenandshake message,
PaeTec Comm. 9 1 e The Comcast host sent a vahidt f i el d message, and
Canada WSS?man comm Z é e The Comcast host'di t fi el d message indicated that it
China China Telecom 49 2 had all pieces.
gg:ﬁ:‘;ﬂ &%?rggt‘:iﬂ Eé'r'] i i In other words, the uploads of a file were blocked only when the
Greece y OTEnet 9 122 8 F:omcast hqst has finished downloading the file and was upload-
Hungary DataNet 17 1 ing it altruistically. However, the uploads were not blodkehen
India SonicWall 1 1 the Comcast host was still missing some of the pieces of tae fil
Ireland IBIS 9 1 and thus, appeared to be interested in downloading. Fraresi
Jamaica Terrenap 1 1 periment, we conclude that the middleboxes which tear doitn B
Kuwait. Wataniya Telecom ° 4 Torrent connections maintain some per-flow state and igpec
Malaysia Le;iﬁogow%ays'a 336 122 packet payload for specific protocol messages.
New Zealand| TelstraClear 22 1 Note that this case study only applies to Comcast. Unfotaiya
Saudi Arabia | SaudiNet 8 1 we did not have access to hosts connected to other ISPs ard wer
Singapore StarHub 156 101 therefore unable run the same controlled experiment fanthe
South Korea | Korea Telecom 12 5
Spain Telefonica 602 1 5.4 When do ISPs block BitTorrent flows?
Taiwan E’?‘]Na . 214 2 ISPs that have admitted to blocking BitTorrent flows clairttiney
eng Kung Univ. 11 2 . .
APOL 10 1 do so only during the hours of peak load, when their networgs a
UK Tiscali 354 2 congested. The data we collected with BT Test enables usettkch
Comcast 4397 2574 whether blocking occurs continuously throughout the dag bm-
Cox 1004 508 ited to just a few hours of the day. For each hour of the day, we
RoadRunner 2086 50 calculated the percentage of result sets that containettrese of
Cablevision 646 1 blocking. For each result set, we inferred the location eftéster
Suddenlink 123 4 .
Mediacom Comm. 120 17 and then computed the local timehen the test had been per-
Clearwire 34 9 formed. We then grouped together measurements from the same
Midcontinent Comm. 21 13 hour. Here we present data for Comcast and Cox because tieese a
General Comm. 13 5 the two ISPs for which we had the most data points.
USA Pavlov Media 11 2 Figure 3 shows our results. While the number of measurements
PaeTec Comm. 9 1 per hour shows a diurnal pattern with more measurementsein th
PrairieWave 4 2 . . . .
UC Riverside 4 1 evening than in the early morning, the fraction of blockestse
Journey Comm. 3 1 shows no clear trend. We observed blocking for a significead-f
NHCTC 2 1 tion of the tests throughout the day. Figure 4 groups thdtrests
Bergen.org 1 1 by day of the week instead. Again, there is no clear trend; we
DHL Systems Inc. 1 1 observed a significant fraction of blocked hosts on all ddyth®
'g,"ggc'org i i week. Finally, we used a Comcast host under our control itt-Sea
The Shaw Group 1 1 tle, WA, to run BTTest at 30-minute intervals for an entireeke
WSIPC 1 1 We found that BitTorrent flows were constantly blocked dgtiine
entire week.
Table 1: The number of hosts with BitTorrent blocking In conclusion, our data suggests that BitTorrent flows anegoe

grouped by country and ISP.

flows using the BitTorrent protocol regardless of whethenor

they are using a well-known BitTorrent port.

5.3.1 Casestudy: Comcast

blocked independent of the time of the day or the day of thekwee

5.5 At what stage are flows blocked?

Finally, we took a closer look at the BT Test packet tracee®at
which stage of the BitTorrent protocol the blocking occdrr@he
RST packets can be injected at different points in a trangfat is,
at different stages of the BitTorrent protocol shown in Fe&g. To

perform this analysis, we used the data reported by oursider-
applet about the last message it sent before the connecéistonn
down.

Our analysis found that most ISPs identify BitTorrent floveséd
on protocol messages. Presumably, the ISPs are using delegt pa
inspection to monitor the protocol messages exchangedoaahett
cide whether a flow should be blocked. To understand the ggeci In total, we identified four different places in the protoal
protocol messages that trigger blocking, we ran a conttatbe which connections were blocked. We found a very strong eorre
periment using a Comcast host in Seattle, WA, to which we had lation in behavior across ISPs, and we observed mostly stemsi
access. In this experiment, we emulated BitTorrent trasgfist as behavior for hosts of the same ISP. Due to lack of space, we onl
BTTest does, but we varied more aspects of the flows; for exam- give examples for each categories.

ple, we obfuscated BitTorrent protocol messages by flipbiite

we left out some of the messages, and we changed the number of
advertised pieces in tha t f i el d message to emulate different
sharing scenarios, e.g., both peers having some but naeaépof
the file.

e After the handshake message: For Telekom Malaysia
and Brasil Telecom we observed that the connection with

3We used an IP-to-geolocation tool to infer the timezone ahea
tester.



100

80

100

@ 400 7 2 7

%] Q 7 Q

£ 300 A 5 801 2 60 - 5 801

kS 1 9 60 - S 1 ) 60 -

5 20 Y g 40 S 404

= Yl = =l = il = (i

=) [s} > [s]

=R 1111 s 0 zZ 9 Ll e 0
0 4 8 12 16 20 0 4 8 12 16 20 0O 4 8 12 16 20 0 4 8 12 16 20
Hour of the day (local time) Hour of the day (local time) Hour of the day (local time) Hour of the day (local time)

(a) Comcast (USA) (b) Cox (USA)

Figure 3: Result sets grouped by the hour of the day for Comcasand Cox: BitTorrent flows were blocked at all times of the day.

» 800 £ 100 o 160 £ 100
0 Q 173 Q
£ 600 s 80 £ 120 s 80
5 2 60 kS 2 60
g 400 § 40 g 80 § 40
200 2 40 2
£ 5 20 5 5 20
z 0 < 0 z 0 < 0
Sun  Tue Thu  Sat Sun  Tue Thu  Sat Sun  Tue Thu  Sat Sun  Tue Thu  Sat
Day of the week (local time) Day of the week (local time) Day of the week (local time) Day of the week (local time)
(a) Comcast (USA) (b) Cox (USA)

Figure 4: Result sets grouped by the day of the week for Comcaand Cox: Blocking occurred on every day of the week.

BitTorrent messages was torn down immediately after the centralized architecture of our BTTest tool limits scalipiand
handshake message was sent by the leecher. is vulnerable to whitelisting by ISPs wishing to avoid déi@e. It
e After the bi tfiel d message: For StarHub, RoadRun- would be useful to investigate ways to decentralize BT Teatlow
ner OTEnet, and most other ISPs we observed connection the emulated BitTorrent transfers to be sent between tepgers.
tear-down for connections with BitTorrent messages afiert ~ Finally, while our current methodology allows us to detedt8r-
leecher sent thbi t f i el d message. rent blocking along an Internet path, we cannot diagnoseravhe
e After the i nt er est ed message:For most Comcast and along _the path the_ traffl_c is being blocked, i-e., WhI-Ch ISeis
Cox hosts, we observed that the connections with BitTorrent sponsible for blocklng BitTorrent. A user CQUld potenyadcalize
' the source of blocking by repeatedly running the test froraess
messages were torn down after ifet er est ed message located at different vantage points in the Internet. By elatting
was sent by the leecher. the blocking data obtained from multiple transfers alorftedent
e Laterinthetransfer: Finally, for Comcast, Cox and Media- Internet paths, one could hope to deduce which links areestits)
com, we observed that connections with random data on Bit- BitTorrent blocking.
Torrent ports were occasionally torn down later in the trans
fer. However, we were unable to determine a common pat- 7. REFERENCES

tern for the exact point where the connection was torn down. i )
[1] “Sandvine Inc.’ht t p: / / ww. sandvi ne. cont .

While the types of blocking can sometimes vary even between [2] “Packeteer Inc.ht t p: / / ww. packet eer . cont . '
hosts of the same ISP, we found that the basic characteristic ~ [3] ‘DsIReports: Comcast is using Sandvine to manage P2Rexdions.”
blocking were mostly consistent across hosts and evensasoose 2;;{); /I /s "Wl‘J”s"l ?]Sg'_ rsz?]%rvti Sn'e‘f‘:'g_f%n“a”gi(;_lgggégfﬁgn? ons
of the ISPs. Because of this, we suspect that many ISPs are us-[4] “EFF ‘Test Your ISP’ Project”

ing similar equipment for traffic identification and resejeition, http:// ww. ef f . or g/t est youri sp.
e.g., the specialized hardware sold by Sandvine [1]. Howete [5] “Comments of Comcast Corporation before the FCC.”
is possible that these boxes are configured differently fliergint http://fjallfoss.fcc.gov/prod/ ecfs/retrieve.
locations or at different times of the day. cgi ?native_or _pdf=pdf & d_document =6519840991.
[6] “The BitTorrent Protocol Specification, Version 11031.
6. CONCLUSION AND FUTURE WORK http.//bulttorreqt.org/ beps/ bep_0.003. htm .
[7] A. Parker, “The true picture of peer-to-peer file sharing
Recently published reports of access ISPs blocking Bi€Fdrr http://ww. cachel ogi c. conl research/ .
transfers by injecting forged RST packets have sparked @n-in  [8] “Vuze Network Status Monitor.”
national debate on network neutrality. In this context, phesent http://azureus. sourcef orge. net/plugi n_details.

php?pl ugi n=aznet non.
“The Global Broadband Speed Test.”
http://ww. speedt est. net/.

paper makes two contributions. First, we presented theydexfi
BTTest, a reliable and easy-to-use tool that allows endsusede-
tect if BitTorrent traffic is being blocked on their accesli Sec-
ond, we presented results from a large-scale measurematt st
that is based on a widely-used public BT Test deployment.

Our current study is limited to detecting BitTorrent blondj
and there are a number of open challenges and interestiag- dir
tions for future work. First, it would be interesting to deye
analysis techniques for detecting other types of trafficimda-
tion beyond blocking, e.g., BitTorrent traffic shaping. &ed, the

[9



